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Abstract
A modified version of compact directed percolation on a square lattice is
examined in the context of a model problem for the spread of forest fires. The
modification relates to conditioning the extent of the fire spread along the forest
boundaries. Exact expressions are given for the mean perimeter length and the
mean size of the damaged forest under such conditioning.

PACS numbers: 64.60.Ak, 02.50.−r, 05.50.+q, 64.60.Cn, 87.23.−n

Compact directed percolation (CDP) on a square lattice has been widely studied via its links
to the Domany–Kinzel cellular automaton [1] and by direct cluster enumeration [2, 3]. The
fact that CDP can be solved exactly makes it interesting from the perspective of studying the
spread of forest fires, epidemics and avalanches [4, 5]. The prospect of finding exact solutions
also provides a motivation for analysing variants of the basic model [6–10]. One such variant
is considered here, developed in the context of a simple forest fire model.

Consider a forest defined on a square lattice with tree locations labelled by integer pairs
(x1, x2), where x1, x2 � 0 (figure 1). At time t = 0, the tree at the origin is burning with
probability 1. At integer time t, the state of every tree on a shell, whose chemical distance
from the origin x1 + x2 = t, is determined depending upon the state of the nearest neighbour
trees in the preceding shell. For trees interior to the forest (with x1 �= 0 and x2 �= 0) there
are two such neighbours and the conditional probability rules are as for CDP: P[1 | 0, 0] = 0,
P[1 | 1, 0] = P[1 | 0, 1] = p and P[1 | 1, 1] = 1, where 1(0) corresponds to burning (not
burning). However, for trees on the forest boundaries (the x1 and x2 axes) we now construct
a modified rule, wherein the first m and n trees respectively catch fire with probability 1,
whereafter all such trees remain intact (see figure 1). This allows the ‘scale’ of the resulting
fire damage to be investigated with respect to the boundary rule. This particular rule has been
chosen for ease of presentation of the key ideas. More complicated examples of boundary
rules that can also be handled using the same methods are given at the end.

The clusters of burned trees are fully compact (i.e. contain no holes) and the model exhibits
a phase transition at p = pc = 1/2 (see below). Finite clusters may be characterized by the
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Figure 1. A typical fire-damaged cluster of trees generated in 14 time-steps, with given values of
m = 2 and n = 4. The diagonal lines link sites on a shell. The circles represent damaged trees, and
the solid line is the perimeter staircase polygon. For this cluster, � = 32, s = 27 and the cluster
weighting is p10q14.

low-order moments of their perimeter length and size. The perimeter length is defined to be
the length of the perimeter of the so-called ‘staircase’ polygon [3, 10–12] (defined on the dual
lattice) that bounds the cluster as tightly as possible (figure 1). The cluster size is simply the
number of burned trees or the area of the staircase polygon. To evaluate the relevant moments,
we consider the area-perimeter generating function gmn(y, z) for staircase polygons defined
for given values m and n (see figure 1). By definition,

gmn(y, z) ≡
∑
�,s

Cmn
�s y�zs (1)

where y is the perimeter ‘activity’, z is the area ‘activity’, and Cmn
�s is the number of compact

clusters of perimeter length � and area s restricted to have given values of m and n. Adapting
the arguments in [2, 10] concerning the properties of random walks, the probabilistic weight
of a restricted cluster of perimeter length � is given by p−(m+n)q−2(pq)�/2, where q =
1 − p. This, together with (1), means that the probability, Qmn, that the fire eventually
dies out is given by

Qmn ≡ p−(m+n)q−2gmn(
√

pq, 1). (2)

Further, the mean perimeter length, Lmn, and the mean size, Smn, of the damaged area (given
that the damage remains finite, which introduces a factor Q−1

mn) are given by

Lmn = 〈�〉mn ≡ Q−1
mnp

−(m+n)q−2

(
y

∂gmn(y, 1)

∂y

)∣∣∣∣
y=√

pq

(3)

Smn = 〈s〉mn ≡ Q−1
mnp

−(m+n)q−2

(
∂gmn(

√
pq, z)

∂z

)∣∣∣∣
z=1

. (4)

It follows from a duality argument that (3) and (4) are symmetric about p = pc [2]. In
what follows, we mainly consider the regime p < pc when the fire damage remains finite
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with probability 1; see below. The task reduces to evaluating the area-perimeter generating
function and its derivatives at y = √

pq and z = 1. The main purpose of this letter is to show
how to evaluate (2), (3) and (4) exactly.

It was shown in [10] in the context of another modified CDP problem that gmn(y, z) obeys
the following recursion relation:

zgm+1,n = y2zn+1gm,n + gm+1,n+1 m,n � 1. (5)

This recursion has not yet been solved for arbitrary y, z although related generating functions
have been found explicitly in terms of q-series [11, 12]. However, when z = 1 it follows from
(5) that

gmn(y, 1) = y4λm+n−2

(6)

λ(y) = 1 −
√

1 − 4y2

2
.

This expression is sufficient to evaluate (2) and (3). For p < pc = 1/2 we have Qmn = 1 and
for p > pc we have Qmn = (q/p)m+n−2 < 1 (except Q11 = 1). Thus the fire definitely stops
spreading if p < pc, but may continue indefinitely if p > pc with probability P∞ = 1 − Qmn.
For p → pc

+ we have P∞ ∼ 4(m + n − 2)(p − pc) with exponent β = 1. For p < pc the mean
perimeter length of the fire-damaged area is given by

Lmn = 4 + 2(m + n − 2)

(
1 − p

1 − 2p

)
(7)

and this diverges as p → pc
− with exponent τ = 1. Asymptotically, we have

Lmn ∼
(

m + n − 2

2

)
1

(pc − p)
. (8)

Equivalently, since � = 2t + 4 where t is the time taken by a particular fire to die out, we can
consider the mean time, Tmn, until the fire stops spreading,

Tmn ≡ 〈t〉mn = (m + n − 2)

(
1 − p

1 − 2p

)
.

Calculating the mean size of the damaged area is significantly more difficult, as one needs
information about the derivative of gmn with respect to z (see (4)). Differentiating (5) directly
and setting z = 1 gives

fm+1,n − y2fmn − fm+1,n+1 = (n + 1)y6(λ)m+n−2 − y4(λ)m+n−1 (9)

where fmn(y) ≡ ∂gmn(y, z)/∂z|z=1. The solution of this non-trivial inhomogeneous recursion
may be found by assuming a (symmetric) trial solution of the form

fmn(y) = [A(m2 + n2) + B(m + n) + Cmn + D]λm+n (10)

where A, B, C and D are functions of y, λ. After some straightforward algebra these coefficients
can be evaluated (see [10] for details), whereupon the mean cluster size for p < pc is given by

Smn =
[

1

2(1 − 2p)
(p(1 − p)(m2 + n2) − p(m + n) + 2(1 − p)2mn)

+
p2

2(1 − 2p)2
(m + n − 2)

]
. (11)

This expression diverges as p → pc
− with exponent γ = 2 with the following asymptotic

behaviour:

Smn ∼ m + n − 2

32(pc − p)2
. (12)
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Note from (7) and (11) that for m = n = 1 we have L11 = 4 and S11 = 1. This is expected since
if the fire cannot spread along the forest boundaries then no other trees (apart from the original
tree) can catch fire. Also, when p = 0 we have Lmn = 2m + 2n and Smn = mn; this is again
expected since a rectangular area of damage is guaranteed as a minimum by the compactness
rule P[1 | 1, 1] = 1.

Having derived (7) and (11) it is interesting to compare them with the results obtained using
the conventional CDP boundary rule wherein the boundary trees catch fire with probability p
conditional on their predecessor catching fire [2, 10]:

L = 4

(
1 − p

1 − 2p

)
∼ 1

pc − p
(13)

S =
(

1 − p

1 − 2p

)2

∼ 1

16(pc − p)2
. (14)

In each case, the exponents are the same (since the universality class is the same) but the
amplitudes are different. If m + n � 4 then Lmn > L and Smn > S for all values of p. In
this situation, the spread of the fire will be greater on average than would be the case if the
boundary trees were able to burn with probability p (conditional on their predecessor). If
m + n < 4 the converse can occur as is clearly evident by considering the dominant diverging
terms in (8), (12), (13) and (14). Note that the ratio Smn/Lmn ∼ S/L ∼ (16(pc − p))−1;
in other words the amplitudes Lmn and Smn scale asymptotically by the same factor of
(m + n − 2)/2. The same holds true for P∞.

Approaching the critical point the fluctuations become large. Some measure of this can be
gained by considering the variance of the perimeter length distribution, which can be deduced
using (6) and an obvious generalization of (3). The result is complicated, but (asymptotically)
we have

〈�2〉mn ∼ m + n − 2

8(pc − p)3
(15)

so the variance diverges with exponent θ = 3. Note that asymptotically all moments have an
amplitude ∝ (m + n − 2).

There are several generalizations of the above that can be handled relatively easily using
the given results (although the resulting expressions are very complicated which is why they
are not given here). For example, one can consider the case where trees on the boundary
burn with some fixed probability (not necessarily p) conditional on their predecessor, but only
up to some fixed values of m and n (a ‘fire-break’ model). Or one can assume that the first
m and n boundary trees burn with probability 1 and thereafter burn with some other fixed
probability conditional on their predecessor (a ‘flame-front’ model). The solution for such
boundary rules requires only a simple redefining of the cluster weighting and the summation
of various geometric series.

References

[1] Domany E and Kinzel W 1984 Phys. Rev. Lett. 53 311
[2] Essam J W 1989 J. Phys. A: Math. Gen. 22 4927
[3] Janse van Rensburg E J 2000 The Statistical Mechanics of Interacting Walks, Polygons, Animals and Vesicles

(Oxford: Oxford University Press)
[4] Hinrichsen H 2000 Adv. Phys. 49 815
[5] Bunde A and Havlin S 1996 Fractals and Disordered Systems (Berlin: Springer)
[6] Lin J-C 1992 Phys. Rev. A 45 R3394



Letter to the Editor L425

[7] Essam J W and TanlaKishani D 1994 J. Phys. A: Math. Gen. 27 3743
[8] Essam J W and Guttmann A J 1995 J. Phys. A: Math. Gen. 28 3591
[9] Brak R and Essam J W 1999 J. Phys. A: Math. Gen. 32 355

[10] Kearney M J 2002 J. Phys. A: Math. Gen. 35 4553
[11] Brak R and Guttmann A J 1990 J. Phys. A: Math. Gen. 23 4581
[12] Prellberg T and Brak R 1995 J. Stat. Phys. 78 701


